Logarithms, Part 3

Finally have a little time for a post.

So we know how to solve x2 = 10 by taking the square root of both side of the equation to get x = ±3.162… Note that taking the square root of x2 undoes or reverses the squaring of x.

But what do you do if x is in the exponent and not the base?

\[
{2}^{x}\hspace{0.33em}{=}\hspace{0.33em}{10}
\]

You can’t take the xth root since you don’t know what x is. So what to do? From my last post, you saw that log2 10 means “what is the number that I can use as the exponent of 2 so that the answer is 10”. So in the above equation, if I take the log2 of both sides, I get

\[
{\log}_{2}{2}^{x}\hspace{0.33em}{=}\hspace{0.33em}{\log}_{2}{10}
\]

The left side of this equation is doing two inverse operations on the number 2 – raising 2 to a power then taking its log. In other words, the left side can be seen as saying “what is the number that I can use as the exponent of 2 so that the answer is 2x ?”. Well the answer to that question is x. So the left side is just x and the right side is just a calculation:

\[
{\log}_{2}{2}^{x}\hspace{0.33em}{=}\hspace{0.33em}{\log}_{2}{10}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\Longrightarrow\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}{x}\hspace{0.33em}{=}\hspace{0.33em}{\log}_{2}{10}\hspace{0.33em}{=}\hspace{0.33em}{3}{.}{32192809488}
\]

Well that’s just dandy! Trouble is, without the internet, how do you find log2 10? I have not seen a calculator with a log2 x button. As mentioned in my last post, calculators usually have buttons to take logs relative to bases 10 and e. Well fortunately, there are lots of properties of logs that can help. The one we can use here is

\[
{\log}_{a}{b}^{x}\hspace{0.33em}{=}\hspace{0.33em}{x}\hspace{0.33em}{\log}_{a}{b}
\]

This means that I can take the log with respect to any base, and the x can be removed as the exponent. So for our problem, let’s take the log10 (the log x key on your calculator) of both sides and see what happens:

\[
{\log}_{10}{2}^{x}\hspace{0.33em}{=}\hspace{0.33em}{\log}_{10}{10}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\Longrightarrow\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}{x}{\log}_{10}{2}\hspace{0.33em}{=}\hspace{0.33em}{1}
\]

Let’s stop here for a moment before I complete the solution. Why is the right side equal to 1? Log10 10 is saying “what power of 10 equals 10?”. The answer is 1 because 101 = 10. On the left side, I used to log property above to bring the x in front of the log. Now log10 2 is just a number. You can use the log x key on your calculator to find that log10 2 = 0.3010 to four decimal places. So now the equation becomes

\[
{x}{\log}_{10}{2}\hspace{0.33em}{=}\hspace{0.33em}{1}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\Longrightarrow\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}{0}{.}{301}{x}\hspace{0.33em}{=}\hspace{0.33em}{1}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\Longrightarrow\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}{x}\hspace{0.33em}{=}\hspace{0.33em}\frac{1}{0.301}\hspace{0.33em}{=}\hspace{0.33em}{3}{.}{3219}
\]

So 23.3219 = 10. In my next post on logs, I’ll do more equation solving using logs.